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Effectiveness of energy wheels from transient measurements.
Part I: Prediction of effectiveness and uncertainty
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Abstract

An analytical model is presented for predicting the effectiveness of rotating air-to-air energy wheels using only the
characteristics measured on the same non-rotating wheels exposed to a step change in temperature and humidity. A
relationship between the step change response and the periodic rotating response of an energy wheel is developed
assuming that the energy wheel behaves as a first order linear system for water vapour and sensible energy exchange.
This allows the prediction of the effectiveness of an energy wheel when only the characteristics of a stationary wheel
exposed to humidity and temperature step responses are known. In Part I of this paper, effectiveness correlations
and uncertainty bounds are developed for sensible and latent effectiveness of energy wheels using data from transient
measurements.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Energy wheels are regenerative exchangers used to
transfer heat and water vapour between supply and ex-
haust airstreams in HVAC systems. During hot and
humid weather, air flows through the desiccant coated
wheel matrix in the supply section and heat and mois-
ture are stored in the supply section of the wheel matrix.
As the wheel rotates, the thermal or sensible energy and
moisture stored in the supply air section of the wheel
matrix during hot humid supply air conditions are
released to the dryer and cooler air flowing through
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the exhaust section. As a result of the wheel rotation,
heat and moisture are continuously transferred between
the supply and exhaust airstreams as the wheel matrix is
exposed to steady periodic changes in input conditions.

Since outdoor and indoor conditions change quite
slowly (order of hours) compared to the time constant
of energy wheels (e.g. of the order of 10 s [1]), energy
wheels operate under essentially steady state conditions.
During the steady operation of HVAC systems, energy
wheel matrices are dynamic systems with a periodic
input and output. Therefore, the hypothesis of this re-
search is that it is possible to predict the steady state
response of an energy wheel to a periodic input using
only data obtained from a single step change in humidity
and temperature. The goal of this research is to develop
a relationship between the step (or transient) response
and the periodic (or steady state) response of a
ed.
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Nomenclature

a characteristic of the system, inverse of the
time constant, s (s�1)

an constant in Fourier series
A 0 energy amplitude ratio
As heat and mass transfer surface area on the

supply or exhaust side (m2)
b constant forcing or input function (K or kg/

m3) or constant in Fourier series
c constant of integration
Cp specific heat capacity (J/(kg K))
Cr ratio of the minimum to maximum heat

capacity rate of the air streams
C�

r overall heat (or moisture) capacity ratio
d constant defined in Eq. (41)
e constant defined in Eq. (41)
f function of
f(t) forcing function or external input (K or kg/

m3)
af(t) experimental forcing function or external

input (K/s or kg/(m3 s))
h convective heat transfer coefficient (W/

(m2 K))
hm convective mass transfer coefficient (m/s)
L thickness of wheel (m)
M total mass of wheel (kg)
_m mass flow rate of dry air on the supply or ex-

haust side (kg/s)
N angular speed of the wheel (cycle/s)
n integer constant in Fourier series
NTU number of transfer units
p period of exposure per cycle for the supply

or exhaust gas (s/cycle)
Q volume flow rate of air on the supply or ex-

haust side (m3/s)
RH relative humidity
rpm revolutions per minute
t time (s)
t* dimensionless time 1

p t � z
U

� �� �
T bulk temperature (�C or K)
u mass fraction of water in the desiccant (kgw/

kgd)

U mean air flow velocity in an exchanger flow
channel (m/s)

U(g) uncertainty in parameter g
w angular frequency of the forcing function

(rad/s)
x output or response of the system, the same

as x(t)
z axial coordinate (m)
z* dimensionless axial coordinate (z/L)

Greek symbols

a phase shift angle (rad)
e effectiveness
h angle of wheel rotation (rad)
q density (kg/m3)
s time constant, wheel alone (s)
v weighting factor of a time constant
w dependent variable (temperature, humidity

ratio or enthalpy) used in Eq. (1)
@ constant defined in Eq. (31)
1 infinity

Subscripts

a air
CF counterflow
d desiccant
e exhaust
i inlet
g total gas phase (air and water vapour)
m matrix (including support material, desic-

cant and moisture)
min minimum
mt dimensionless moisture transfer group for

energy wheels
o outlet
PF parallel flow
s supply
v water vapour

Superscript

rec recuperator
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regenerative heat and moisture exchange wheel. Using
data from the step (or transient) response, this relation-
ship will then be used to predict the performance or
effectiveness of the wheel under periodic (or steady state)
operating conditions.

The effectiveness is the prime performance factor to
determine the economic viability or feasibility of an
energy exchanger for any HVAC application. Since the
inlet operating conditions (temperature, humidity, and
air flow rate) usually change quite slowly in typical
HVAC applications, the effectiveness, determined at
steady-state test conditions is used to characterize the
performance of energy exchangers. ASHRAE Standard
84–91 [2] uses Eq. (1) to define this steady state effective-
ness as

e ¼ _msðwi � woÞjs
_mminðws;i � we;iÞ

; ð1Þ
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where

ðwi � woÞjs ¼ ðwo � wiÞje ð2Þ

for balanced mass flow and energy rates, (i.e., _ms ¼ _me).
_m is the mass flow rate of dry air and w represents the air
temperature, humidity ratio and enthalpy for sensible,
latent and total effectiveness, respectively. _mmin is the
minimum value of either _ms or _me. Subscripts i, o, s
and e represent the inlet, outlet, supply and exhaust sides
of the energy exchanger.

There have been several research papers which have
presented experimental methods, effectiveness data and
effectiveness correlations for energy wheels under stea-
dy state operating conditions [3–9]. However, there
are no research papers in the literature on the determi-
nation of effectiveness of energy or heat wheels using
measured data from non-steady state (i.e., transient)
conditions. Part I of this paper, therefore, presents a
theoretical model that allows one to predict the effec-
tiveness of an energy wheel using only data obtained
during transient measurements. Since it is important
to quantify the uncertainty in the predicted effective-
ness [5,6], an uncertainty analysis is included which
provides the 95% uncertainty bounds in the effective-
ness predicted from transient measurements. Part II
of this paper [10] will validate the theoretical model
developed in Part I using effectiveness data from sev-
eral wheels measured according to ASHRAE Standard
84–91 [2].

The objectives of Part I of this paper are to: (1) devel-
op the relationship between the step response and a peri-
odic response of an energy wheel so that if one knows
the characteristics of a step response then the periodic
response can be predicted and (2) predict the steady state
sensible, latent and total effectiveness of an energy wheel
and the corresponding uncertainties. To achieve these
objectives, mathematical models are developed to pre-
dict the air properties (T and qv) as the air leaves an en-
ergy wheel when there is a step change in the inlet air
humidity and temperature. Then these models are used
to predict the outlet conditions of an energy wheel when
the input properties are changed in a series of step
changes which are periodic or steady state as occurs in
rotating energy wheel matrices in HVAC applications.
2. Governing equations

The simplified governing equations that govern the
transfer and storage of sensible energy on the supply
or exhaust side of a counter flow sensible regenerative
heat wheel exchanger are presented by [11] assuming
that there is negligible conduction in the air and matrix
in the axial (flow) direction. The sensible or thermal
energy balance equation on the airside describing the
balance between advection heat transfer in the air and
convective heat transfer between the air (g) and the
wheel matrix (m) is

oT g

oz�
¼ NTUðTm � T gÞ. ð3Þ

The equation describing the balance between thermal
energy storage in the wheel matrix and convective heat
transfer between the air flowing through the wheel and
the matrix is

oTm

ot�
¼ NTU

C�
r

ðT g � TmÞ. ð4Þ

All symbols are defined in the nomenclature and the
governing dimensionless groups are defined as

NTU ¼ hAs

ð _mCpÞg
ð5Þ

and

C�
r ¼

ðMCpÞmN
ð _mCpÞg

. ð6Þ

Similarly, the mass diffusion equations for water vapour
transfer in a regenerative energy wheel are given by [8] as

oqv

oz�
¼ NTUmtðqv;m � qvÞ ð7Þ

which describes the mass balance in the air and

oqv;m

ot�
¼ NTUmt

C�
rmt

ðqv � qv;mÞ ð8Þ

which describes the mass balance in the desiccant mate-
rial in the wheel matrix. The dimensionless groups
describing moisture transfer are:

NTUmt ¼
hmAs

Q
; ð9Þ

which is equal to NTU if the Lewis number is unity, and

C�
rmt

¼
qd;dryAs;dL

Qp

� �
ou

oqv;m

� �
. ð10Þ
2.1. Mathematical model

It is noted that Eqs. (4) and (8) are of the mathemat-
ical form of a first-order linear system with time as the
independent variable. These equations can be repre-
sented by a differential equation in the form

dx
dt

þ ax ¼ af ðtÞ; ð11Þ

where t is the independent variable time, a is a character-
istic of the system (whose inverse is the time constant, s),
f(t) is the forcing function or external input, x is the out-
put or response of the system as a function of time. For
this research, the forcing function is a step change in
temperature (K) or water vapour density (kg/m3) of
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the air and the output is either the matrix temperature,
Tm, or the water vapour density in the matrix qv,m.
The dimensionless time introduced in Eqs. (4) and (8)
is defined as

t� ¼ 1

p
t � z

U

� �� �
. ð12Þ

For small dwell times for air flowing through the wheel
(or small carry over ratios in the wheel), z=U is negligible
and Eq. (12) becomes

t� ¼ t
p
. ð13Þ

For this operating condition, the time response of the
outlet air temperature, Tg, and vapour density, qv, must
have similar characteristics as that of the matrix—so by
measuring the outlet air response we can get the wheel
matrix response characteristics. Introducing Eq. (13)
into Eqs. (4) and (8), we have

oTm

ot
þNTU

C�
r p

Tm ¼ NTU

C�
r p

T g ð14Þ

and

oqv;m

ot
þNTUmt

C�
rmt
p

qv;m ¼ NTUmt

C�
rmt
p

qv. ð15Þ

Equating Eqs. (14) and (15) with the general differential
Eq. (11) implies that the characteristic parameter for
heat transfer is

a ¼ 1

s
¼ NTU

C�
r p

; ð16aÞ

while the characteristic for mass transfer is

a ¼ 1

s
¼ NTUmt

C�
rmt
p

; ð16bÞ

where s is the time constant. The time constant for heat
transfer may be different from the time constant for
mass transfer and these time constants will be measured
separately. Comparing Eqs. (14) and (15) with Eq. (11)
also shows that the forcing function, af(t), is the temper-
ature of the inlet air for heat transfer:

af ðtÞ ¼ aT g ð17aÞ

and the water vapour density of the inlet air for mass
transfer

af ðtÞ ¼ aqv. ð17bÞ

Therefore, comparing Eq. (11) with Eqs. (4), (8), (14),
(15) which relate the properties of the air and matrix,
it is seen that the heat and mass transfer equations are
coupled, linear first-order differential equations in time.
Hence, a model of a linear first-order system is used in
the development of the response relationship. It is
important to note that, although Eqs. (3)–(15) can be
either for a counter flow or parallel flow exchanger,
the forcing function (or boundary conditions) typically
used in linear system design theory represents a parallel
flow arrangement with both the supply and exhaust flow
in the same direction. Therefore, the results obtained
from this linear model will represent an energy wheel
operating in parallel flow. Later the counter flow results
will be predicted using these parallel flow results.

2.2. Response to input functions relevant to energy

wheel testing

The output or response of a system to various input
functions typical of energy wheels is considered in this
section. These input functions are constant (or step)
and, secondly, rectangular periodic input functions.
These are important because the response of the energy
wheel to step input functions [1] will be used to estimate
the steady state response which is the response to a rect-
angular periodic input function as the wheel rotates
between supply and exhaust airstreams.

2.2.1. Step input function

The step input function is defined by

af ðtÞ ¼
ab for t P 0;

0 for t < 0.

�
ð18Þ

When af(t) = 0, Eq. (11) is said to be homogenous and
the general solution of Eq. (11) is given [12] as

xðtÞ ¼ ce�at; ð19Þ

where x(t) is the output or response of the system and c

is a constant of integration.
When af(t)5 0, Eq. (11) is said to be non-homoge-

nous and the general solution is

xðtÞ ¼ e�at

Z t

0

eataf ðtÞdt þ ce�at; ð20Þ

where c is a constant of integration. Substituting Eq.
(18) into Eq. (20), gives

xðtÞ ¼ bþ ce�at. ð21Þ

For the case of x(0) = 0, c = �b. Therefore, x(t) = b is
regarded as the equilibrium or steady state solution
and �be�at is the transient solution. Fig. 1 shows the re-
sponse of an energy wheel with various time constants to
a step input function ab = 1. As expected, the response is
quicker as the time constant decreases where 63% of the
change occurs during one time constant. Two of the time
constants shown in Fig. 1 are representative of humidity
and temperature sensors described in Part II of this
paper [10] (e.g. s = 4 s) and energy wheels (e.g.
s = 10 s) according to the research of [1].

2.2.2. Rectangular periodic input and output response

The dynamic operation of an energy wheel matrix
rotating between two air streams with constant but
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different temperature and humidity conditions behaves
like a linear system with a steady state rectangular peri-
odic input forcing function. The matrix of an energy
wheel rotating between hot and cold air streams will
be subject to a step change in the inlet conditions that
are periodic, steady and rectangular. The rectangular in-
put function is defined as

f ðtÞ ¼
1 for 0 6 h 6 p;

�1 for p 6 h 6 2p;

�
ð22Þ

where h is the angle of wheel rotation, wt, (radians)
and w is the wheel speed (rad/s). This rectangular wave
input function can be written in the form of a Fourier
series,

f ðtÞ ¼ ao þ
X1
n¼1

ðan cos nwt þ b1 sin nwtÞ; ð23Þ

where

a0 ¼
1

p

Z p=w

0

f ðtÞdt þ 1

p

Z 2p=w

p=w
f ðtÞdt ¼ 0; ð24Þ

an ¼
1

p

Z p=w

0

f ðtÞ cos nwtdt þ 1

p

Z 2p=w

p=w
f ðtÞ cos nwtdt ¼ 0

for all n and ð25Þ

bn ¼
1

p

Z p=w

0

f ðtÞ sin nwtdt þ 1

p

Z 2p=w

p=w
f ðtÞ sin nwtdt

¼
4=ðnpÞ for n ¼ 1; 3; 5; . . .

0 for n ¼ 2; 4; 6; . . .

�
ð26Þ

The periodic unit input function f(t) expressed as a
Fourier series in Eq. (23) can now be rewritten to get
the forcing function af(t)

af ðtÞ ¼ 4a
p

X1
n¼1

sin nwt
n

for n ¼ 1; 3; 5; . . . ð27Þ

Substituting Eq. (27) as the input forcing function into
Eq. (20), the periodic output (or steady-state solution)
[13] is
xðtÞ ¼
X1
1

4a

pnða2 þ ðnwÞ2Þ
ða sin nwt � wn cos nwtÞ

for n ¼ 1; 3; 5; . . . ð28Þ

Rewriting this output response equation using a phase
shift angle a, gives

xðtÞ ¼
X1
1

4a

pn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðnwÞ2

q ½sinðnwt � aÞ�

for n ¼ 1; 3; 5; . . . ð29Þ

The energy amplitude ratio A 0, defined as the ratio of the
output amplitude to the input amplitude averaged for
one half cycle, is a constant when a and w are constant
and is given as

A0 ¼
X1
n¼1

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðnwÞ2

q ¼
X1
n¼1

@n

for n ¼ 1; 3; 5; . . . ; ð30Þ

where

@n ¼
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðnwÞ2
q for n ¼ 1; 3; 5; . . . ð31Þ

and the corresponding phase shift angle is another con-
stant when a and w are constant

a ¼ tan�1

X1

n¼1

4awn

pn a2 þ nwð Þ2
� �

0
@

1
A

2

X1

n¼1

4a2

pnða2 þ ðnwÞ2Þ

 !2

0
BBBBBBB@

1
CCCCCCCA

¼ tan�1
X1
n¼1

nw
a

 !
for n ¼ 1; 3; 5; . . . ð32Þ

Since the magnitude of the terms in the infinite series in
Eq. (28) decreases rapidly with increasing n, it is found
that including nP 21 is unnecessary in the calculations
for the time constants used. Therefore, terms nP 21
are neglected in this paper. The error of neglecting these
terms is approximately 0.0001%.

Fig. 2 shows the steady state periodic response x(t) of
a system for one cycle with various time constants when
the rectangular periodic input function af(t) in Eq. (27)
has an angular frequency of (a) p

3
rad=s (10 rpm) and

(b) 2p
3
rad=s (20 rpm). Comparison of Fig. 2(a) and (b)

shows that as the wheel speed increases, the amplitude
of the system response is reduced. This figure shows
the effects of the angular frequency and time constant
on the output for a first order linear system. The output
of a system with a small time constant follows the input
function more closely than a system with a large time
constant. In many applications, it is desirable for the
output to follow the input closely, but the opposite is
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the case for a regenerative energy wheel application. The
figure also shows that, as the wheel speed increases, the
amplitude decreases and the phase shift angle increases.

To help understand this physical process, consider
the results in Fig. 2 and imagine that the unit input dur-
ing the first 180� of rotation represents the inlet hot air
stream dimensionless temperature and the input of �1
represents the cold air stream dimensionless tempera-
ture. For this example, the output during the first half
rotation (0� to 180�) represents the dimensionless tem-
perature of the air leaving the exchanger on the hot side
and the output during the second half rotation (180� to
360�) represents the dimensionless temperature of air
leaving the exchanger on the cold side. As the wheel ro-
tates from 0� to 180�, the outlet dimensionless tempera-
ture on the hot side increases and the exchanger
transfers less heat because the wheel temperature ap-
proaches that of the flowing air. Since the goal of the ex-
changer is to cool the hot air stream during the first 180�
of rotation (and heat the cold air stream an equal
amount during the second 180�), it can be seen that
the lower the average output during the first half cycle
(and the higher the average output during the second
half cycle), the better the exchanger. Therefore the
energy amplitude ratio between the output and input is
related to the performance of the exchanger such that
the lower the energy amplitude ratio, the higher the
effectiveness of the exchanger.
3. Effectiveness

The effectiveness of a heat exchanger is defined as the
ratio of the actual heat transfer rate to the maximum
possible heat transfer rate (for an infinite heat transfer
surface area). This same type of definition will be used
in this analysis when determining the effectiveness based
on the input and output of a linear system. The effective-
ness of the system can be defined using the input–output
energy ratios. These energy ratios are represented by the
areas under the input and the output curves as shown in
Fig. 2. Therefore, the effectiveness is defined as the ratio
of the net energy to the maximum possible energy for a
parallel flow heat exchanger. The net energy is the differ-
ence between the maximum possible (input) area and the
output area. The effectiveness for a parallel flow regener-
ative heat exchanger is thus represented as

ePF ¼ net energy

maximum possible energy
. ð33Þ

Since the areas under the output and the input are both
symmetrical for a periodic input, as shown in Fig. 2, the
average is taken over one-half cycle and Eq. (33) is ex-
pressed as

ePF ¼ 1� w
2p

Z p=w

0

ð1þ xðtÞÞdt; ð34Þ

where the output x(t) is given by Eq. (28). After integra-
tion, Eq. (34) becomes

ePF ¼ 0:5� 1

p2

X1
n¼1

4a2

n2ða2 þ ðnwÞ2Þ
for n ¼ 1; 3; 5; . . .

ð35Þ

It must be noted that though the same formula is used
for both sensible and latent effectiveness, they are deter-
mined independently. Sensible effectiveness is determined
from the transient data obtained when the energy wheel
is subjected to a step change in inlet air temperature while
the latent effectiveness is determined from the transient
data obtained when the energy wheel is subjected to a
step change in inlet air relative humidity.

A counter flow heat exchanger has a very high effec-
tiveness when the average outlet temperature of one air
stream (say air stream A) is close to the inlet tempera-
ture of the other air stream (say air stream B) (and con-
sequently very far from the inlet temperature of air
stream A). Therefore it is desired that the output does
not rapidly follow the input. A parallel flow exchanger
with balanced supply and exhaust air flows will have a
maximum effectiveness of 50% when the average outlet
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temperatures of both air streams are equal to the aver-
age temperature of the two inlet air streams.

The behaviour of the system, expressed as the energy
amplitude ratio, is a function of energy transferred [14].
Hence, the effectiveness of the system based on energy
can also be defined as a function of the energy amplitude
ratio of the system since the energy amplitude ratio is the
ratio of the average output amplitude over the cycle to
the input amplitude. It follows from Fig. 2 and the pre-
vious statements, that an exchanger that operates with
balanced supply and exhaust air flows or Cr = 1 will
have maximum effectiveness (i.e., will approach 50%
for parallel flow and 100% for counter flow) as the en-
ergy amplitude ratio approaches 0 and the phase lag ap-
proaches 90�. Therefore, for an energy exchanger, a
lower output amplitude results in a lower energy ampli-
tude ratio and the exchanger effectiveness will be higher.
Substituting Eqs. (30) and (31) into Eq. (35) provides the
relationship between effectiveness ePF and the energy
amplitude ratio A 0. Thus the effectiveness of a parallel
flow exchanger (ePF) can also be expressed as

ePF ¼ 1

2
1� 8

p2

X1
n¼1

@n

n

� �2
" #

for n ¼ 1; 3; 5; . . . ð36Þ

Fig. 3(a) shows the effectiveness ePF (defined in Eqs. (35)
and (36)) as a function of wheel speed for various time
constants (1/a = s). This figure shows that the effective-
ness increases as both the time constant and wheel speed
increase. It should be noted that increasing the energy
wheel speed to a high value will have another less desir-
able consequence. It will increase the carry over of ex-
haust air to the supply side; so manufacturers limit the
wheel speed to a practical range (e.g. 20–40 rpm) and
the carry over is small fraction of the total air flow rate
[6,7]. This leaves the time constant as the main parame-
ter that needs to be examined. As the time constant in-
creases, the output amplitude decreases (as shown in
Fig. 2) thereby reducing the energy amplitude ratio.
Eq. (36) shows that a reduction in the energy amplitude
ratio increases the effectiveness. In Fig. 3(a), the effec-
tiveness increases from 0% to 50% as the wheel speed in-
creases from 0 rpm to 50 rpm for time constants of 4 s
and 10 s. At very large wheel speeds, the effectiveness ap-
proaches (50%) as expected for a parallel flow heat ex-
changer (recuperator) with Cr = 1. As an example, the
effectiveness is 49.9% at 20 rpm when s = 10 s.

To verify the effectiveness calculated from the linear
system model, the results predicted from Eq. (35) are
compared with analytical solutions of [15,16] for a par-
allel flow heat regenerator. Using Eqs. (6) and (16) to re-
late the key parameter in the linear system model (i.e., s
and w) with the key parameters in the analytical solution
of [15] (i.e., NTU and C�

r ) allows a direct comparison
between the linear model used in the paper and the ana-
lytical solution. Fig. 3(a) shows that the thermal effec-
tiveness values calculated from the linear model (i.e.,
Eq. (35)) are in very close agreement with the results pre-
dicted by [15]. The average and maximum differences be-
tween the effectiveness values determined with Eq. (35)
and the analytical solution are 0.001 and 0.002, respec-
tively. This demonstrates the accuracy of the linear sys-
tem model applied in this paper.

Since energy exchangers are almost always used in a
counter flow and not parallel flow configuration, the
effectiveness expression obtained thus far for a parallel
flow regenerator (Eq. (35)) will now be related to a coun-
ter flow configuration. It is known that the effectiveness
of a regenerator (e) can be calculated as a product of the
effectiveness of a recuperator (erec) and a constant which
is a function of C�

r [8,9,17]

e ¼ erec � f ðC�
r Þ; ð37Þ

where C�
r represents the overall matrix heat (or moisture)

capacity ratio. Therefore, the effectiveness of a parallel
flow (PF) sensible heat regenerator can be calculated as

ePF ¼ erecPF � fPFðC�
r Þ; ð38Þ
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where fPFðC�
r Þ means the constant which is a function of

C�
r for an exchanger operating in a parallel flow config-

uration and erecPF is the effectiveness of a parallel flow
recuperator. The effectiveness of a parallel flow heat ex-
changer (recuperator) with Cr = 1 is given [18] as

erecPF ¼ 0:5ð1� e�2NTUPFÞ. ð39Þ

Using Eqs. (35), (38) and (39), an ‘‘NTU–a’’ relationship
for parallel flow heat regenerators can be established
as

NTUPF ¼�0:5ln 1� 1

fPFðC�
r Þ
þ
X1
n¼1

8a2

f ðC�
r ÞðpnÞ

2ða2þðpwÞ2Þ

 !

for n¼ 1;3;5; . . . ð40Þ

Note that this equations allows the calculation of NTU
from a, w and fPFðC�

r Þ. Also, as a decreases (i.e., s
increases), NTU increases. To determine fPFðC�

r Þ the
results of the analytical solution presented by [15] are
curve-fitted using a relationship of the same form used
for counter flow regenerators [8,9,17], which is

ePF ¼ erecPF 1� 1

dðC�
r Þ

e

� �
; ð41Þ

where the values of constants d and e are adjusted to
give the best fit. The value of d obtained is 330 and
the value of e is 0.47. This makes the second term in
Eq. (41) (i.e., the term in the square brackets) to be with-
in the range of

0:999 < fPFðC�
r Þ < 0:9998 ð42Þ

when C�
r P 5 for typical energy wheel operating condi-

tion. Thus the term fPFðC�
r Þ can be assumed equal to 1

for practical energy wheels and NTU can be determined
knowing only the time constant and the wheel speed.

As previously stated, the aim is to relate the effective-
ness of a parallel flow regenerator to a counter flow con-
figuration. The effectiveness for a counter-flow (CF)
sensible heat regenerator is presented by [17] as

eCF ¼ erecCF 1� 1

9ðC�
r Þ

1:93

" #
; ð43Þ

where

erecCF ¼ f ðNTU;CrÞ. ð44Þ

For typical energy wheels, C�
r P 5 for wheel speed

P15 rpm, giving a practical range for the second term
in Eq. (43) as

0:995 < fCFðC�
r Þ < 0:9998; ð45Þ

where fCFðC�
r Þ means a function of C�

r for an exchanger
operating in a counter flow configuration. Thus the term
fCFðC�

r Þ can be assumed equal to 1 for practical energy
wheels. Eqs. (42) and (45), which are approximately
equal to 1, simplify the relationship between the effec-
tiveness of a sensible heat regenerator operating with a
parallel flow configuration and one operating with a
counter-flow configuration. For the same mass flow rate
of air for both cases, the NTU for the counter flow (CF)
regenerator is equal to the NTU for parallel flow regen-
erator (PF), i.e.,

NTUCF ¼ NTUPF. ð46Þ

The statement that NTUCF = NTUPF when the mass
flow rate and inlet property conditions are the same in
counter flow and parallel flow results from the fact that
convection heat transfer coefficients between the air and
the matrix are the same whether the air flow is arranged
in counter flow or parallel flow. Therefore, the effective-
ness of a counter-flow heat regenerator with Cr = 1 and
fCFðC�

r Þ � 1 can be approximated as

eCF ¼ erecCF ¼ NTUCF

1þNTUCF

. ð47Þ

Substituting Eqs. (40) and (46) into Eq. (47), the effec-
tiveness for a counter-flow regenerative heat wheel
exchanger with Cr = 1 and fCFðC�

r Þ � 1 can be expressed
as

eCF ¼
�0:5 ln

P1
n¼1

8a2

ðpnÞ2ða2 þ ðnwÞ2Þ

" #

1� 0:5 ln
P1

n¼1

8a2

ðpnÞ2ða2 þ ðnwÞ2Þ

" #

for n ¼ 1; 3; 5; . . . ð48Þ

Eq. (48), therefore shows that the effectiveness of a
regenerative exchanger (i.e., energy wheel) with a coun-
ter-flow configuration can be predicted when the time
constant of the wheel (which will be determined from
the experimental step response in Part II [10]) and the
wheel speed are known. The predicted effectiveness of
a counter-flow energy wheel with various time constants
using Eq. (48) is shown in Fig. 3(b). Note that the effect
of assuming fCFðC�

r Þ � 1 on the predicted effectiveness is
trivial as shown in Fig. 3(b).At a practical range of 20 to
40 rpm typical of HVAC systems, fCFðC�

r Þ does not show
much effect on the effectiveness. The maximum differ-
ence obtained is 0.02. This figure shows that as the time
constant and wheel speed increase, the effectiveness in-
creases. This is as expected because Eq. (40) showed that
energy wheels that have larger time constant will have
larger values of NTU. The larger the NTU, the larger
the heat transfer surface area and thus the higher the
effectiveness. To verify the effectiveness calculated from
Eq. (48), the results shown in Fig. 3(b) are compared
with results obtained from effectiveness correlation of
[17] and good agreements are obtained as shown in
Fig. 3(c).

In the research of [1] and Part II of this paper[10], it is
found that using one time constant did not result in
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good correlations for the humidity or temperature step
response obtained from experiments; therefore, two-
time constant correlations with corresponding weighting
factors are used. For combined effects of these time con-
stants and their corresponding weighting factors,
NTUCF is defined as

NTUCF ¼ v1NTUCF;1 þ v2NTUCF;2; ð49Þ

where

v1 þ v2 ¼ 1; v1 P 0; v2 P 0 ð50Þ

but with different values of v1 and v2 for each experi-
ment. v is the weighting factor of each time constant
and subscripts 1 and 2 are for the properties (i.e., v
and NTUCF) of the first and second time constants,
respectively. In Part II [10], Eq. (49) will be used in
Eq. (47) to determine the effectiveness of energy wheels
whose humidity or temperature step response correla-
tion has two time constants and two corresponding
weighting factors.
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Fig. 4. The sensitivity of uncertainty in effectiveness to (a) the
uncertainty in the measured time constant and (b) the value of
the time constant when U(s)/s = ±10%. Both graphs are for a
wheel speed of 20 rpm.
4. Uncertainty in effectiveness

In this section, the uncertainty in the effectiveness
predicted with Eq. (48) is determined using 95% confi-
dence limit. This uncertainty in the effectiveness is
calculated based on the fact that the uncertainty in
the measured time constant, s = 1/a can be determined
from experiments (see Part II [10]). Knowing the uncer-
tainty in the time constant (U(s)/s = U(a)/a), the uncer-
tainty in the effectiveness can be determined. The
uncertainty in the effectiveness of an energy wheel with
counter flow configuration is calculated using

UðeCFÞ ¼
oeCF
oa

UðaÞ
� �2
" #1=2

. ð51Þ

Using Eq. (49),

oeCF
oa

¼
X1
n¼1

�8aw2

p2ða2 þ ðnwÞ2Þ2ðe�2NTUÞð1þNTUÞ2

" #

� ½1þ 2NTU� for n ¼ 1; 3; 5; . . . ð52Þ

and the uncertainty in the effectiveness of the counter
flow regenerator is

UðeCFÞ ¼
X1
n¼1

�8aw2

p2ða2 þ ðnwÞ2Þ2ðe�2NTUÞð1þNTUÞ2

" #("

�½1þ 2NTU�ðUðaÞÞ
)2#1=2

for n¼ 1;3;5; . . .

ð53Þ
5. Sensitivity studies

Assuming uncertainty limits for the measured time
constants (U(s)/s = U(a)/a) = ±10% or ±15%, the sen-
sitivity of the uncertainty in effectiveness to the un-
certainty in the measured time constant and the
magnitude of the time constant can be determined with
Eq. (53). In addition, the sensitivity of the effectiveness
and the uncertainty in effectiveness to the wheel speed
can be demonstrated.

In Fig. 4(a), the effect of various uncertainty limits in
the measured time constant on the uncertainty in the
predicted effectiveness is shown. It should be noted that
the typical uncertainties in the time constants measured
using the newly designed transient response device for
energy wheels is (U(s)/s = U(a)/a) = ±10% to ±15%
([1] and Part II [10]). It is seen from Fig. 4(a) that as
the uncertainty in the measured time constant increases,
the uncertainty in effectiveness increases for all time con-
stants. In addition, at any typical value of the uncer-
tainty in the measured time constant, the uncertainty
in effectiveness decreases as the time constant increases.
Fig. 4(a) shows that for a time constant of 10 s and an
uncertainty of U(s)/s = ±10% and ±15%, the uncer-
tainty in effectiveness U(eCF) = ±4.2% and ±6.4%,
respectively.

In Fig. 4(b), the effect of various time constants on
the uncertainty in the predicted effectiveness is shown.
This figure shows the predicted uncertainty in the
effectiveness of the wheel as a function of the time
constant for U(s)/s = U(a)/a = ±10%. As the time
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constant increases, the predicted uncertainty limits in
eCF decrease. The figure shows that for an uncertainty
limit of ±10% in the time constant, the uncertainty in
effectiveness can be predicted within ±3% to ±5%
for time constants of about 5–40 s, which is expected
to be the case for most commercial wheels (Part II
[10]).

The sensitivity of the uncertainty in effectiveness
(assuming an uncertainty in the time constant of U(s)/
s = ±10%) to the wheel speed is shown in Fig. 5(a). This
figure shows that the uncertainty in effectiveness for all
time constants is zero at a wheel speed of 0 rpm. As
the wheel speed increases from zero to larger values,
the uncertainty in effectiveness increases to about 6%
and then decreases as the wheel speed becomes very
large.

Both the predicted effectiveness and the uncertainty
in the effectiveness depend on the wheel speed. To show
this effect more clearly, the effectiveness and uncertainty
in effectiveness for a time constant of 10 s having an
uncertainty of U(s)/s = ±10% is shown in Fig. 5(b).
The figure shows that at a typical operating wheel speed
of 20 rpm, the effectiveness eCF = 76% and the uncer-
tainty in the effectiveness U(eCF) = ±4.2% while at a
wheel speed of 40 rpm, the effectiveness eCF = 79% and
the uncertainty in effectiveness U(eCF) = ±3.7%. This
shows that the effectiveness increases as the wheel speed
increases and the uncertainty in effectiveness decreases
as the wheel speed increases. Using the method in this
paper, a manufacturer could simply and easily choose
the optimal wheel speed for maximum effectiveness with-
out resulting in excessive carry-over of exhaust air into
the supply air stream at design conditions. During other
operating conditions, the wheel speed could be con-
trolled to optimize the performance of the system.
6. Conclusions

In this paper, an analytical model is developed to
predict the effectiveness and uncertainty in effective-
ness of a counter flow energy wheel knowing the time
constant of the wheel and uncertainty in the time con-
stant. This model shows that (a) the effectiveness in-
creases as the time constant and wheel speed
increase, and (b) the uncertainty in the effectiveness
decreases as the wheel speed and time constant in-
crease. Using this method, the effectiveness of energy
wheels can be predicted with uncertainties of ±3%
to ±5%.
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